Walter Leal Filho Diogo Guedes Vidal Maria Alzira Pimenta Dinis *Editors*

Planetary Health and Climate Change: Understanding the Impacts of Climate Change to the Well-Being of Our Planet

Walter Leal Filho · Diogo Guedes Vidal · Maria Alzira Pimenta Dinis Editors

Planetary Health and Climate Change: Understanding the Impacts of Climate Change to the Well-Being of Our Planet

Editors
Walter Leal Filho
Faculty of Life Sciences
Hamburg University of Applied Sciences
Hamburg, Germany

Department of Natural Sciences Manchester Metropolitan University Manchester, UK

Maria Alzira Pimenta Dinis Fernando Pessoa Research, Innovation and Development Institute (FP-I3ID) University Fernando Pessoa (UFP) Porto, Portugal

Marine and Environmental Sciences Centre (MARE) University of Coimbra Coimbra, Portugal Diogo Guedes Vidal Centre for Functional Ecology – Science for People and the Planet (CFE), TERRA Associate Laboratory, Department of Life Sciences (DCV) University of Coimbra Coimbra, Portugal

Department of Social Sciences and Management Universidade Aberta Lisbon, Portugal

ISSN 1610-2002 ISSN 1610-2010 (electronic)
Climate Change Management
ISBN 978-3-031-72739-9 ISBN 978-3-031-72740-5 (eBook)
https://doi.org/10.1007/978-3-031-72740-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

Contents

Part I A Call for a Planetary Health: Climate Change Impacts on Health

1	Lifting the Veil of Complexity, Demanding for Convergence: An Introduction to the Book "Planetary Health and Climate Change" Diogo Guedes Vidal, Hélder Silva Lopes, Maria Alzira Pimenta Dinis, and Walter Leal Filho	3
2	Impacts of Climate Change on the Urban Environment and Health: The Geospatial Technologies Approach Chukwudi Nwaogu, Babatunde Alabi, Bridget E. Diagi, Justin N. Okorondu, Victor A. Agidi, and Susan I. Ajiere	13
3	Psychological Well-Being and Climate Change Concerns: Exploring the Role of Psychological Interventions Carla Alexandra Martins Fonte and Maria José Ferreira	39
4	Assessing Global Wildfires Scope: Subsequent Challenges and Calls for Action in Social Issues and Mental Health	53
5	Impacts of Climate-Related Extreme Events on Human Health Anita Feily and Walter Leal Filho	77
6	Climate Change, Ultraviolet Radiation and Sensitive Ocular Diseases in High Altitude Population Aparicio Effen Marilyn, Murillo Sasamoto Marcelo, Arana Pardo Ivar, + Aparicio Effen James, Aldunate Mendoza Pablo, Huanca Laura Ximena, and Alcocer Tapia Karen	95

viii Contents

Part	t II Regional and Sectoral Perspectives	
7	Solid Waste Management Practices in Sub-Saharan Africa and Its Impact on Climate Change and Planetary Health Justin N. Okorondu, Victor A. Agidi, Chukwudi Nwaogu, Bridget E. Diagi, Susan I. Ajiere, and Babatunde Alabi	131
8	Climate Change-Food Security-Health Nexus in Africa Bridget E. Diagi, Chukwudi Nwaogu, Susan I. Ajiere, Victor A. Agidi, Justin N. Okorondu, and Babatunde Alabi	153
9	The Role of Third Sector Organizations in the Mitigation of Climate Change Impacts Ana Fonseca, João Casqueira Cardoso, Ana Carla Lopes, Isabel Abreu, and Winston Jerónimo Silvestre	173
10	The Impact of Climate Change on the Dynamics of the Urban Thermal Environment: The Case Study of the Touristic Area of Porto, Portugal Hélder Silva Lopes, Paula Remoaldo, Vítor Ribeiro, and Javier Martín-Vide	191
11	Decolonizing Water, Planetary Health, and Climate Change: Learning from the Traditional Peoples and Communities of Paraty, Rio de Janeiro, Brazil Júlia Bastos Borges, Edmundo de Almeida Gallo, and Simonne Teixeira	215
12	Assessment of Fine (PM 2.5) Concentration from Incense Burning in the Residential Homes of Thimphu City: A Scoping Study in Bhutan Pema Yangzom, Sayed Mohammad Nazim Uddin, and Mukesh Kumar Gupta	259
13	Urban Heat Island and Extreme Heat in Portuguese Cities of Tâmega and Sousa: A Comprehensive Study on Climate Change Impacts Beatriz Gomes Pinto, João Magalhães, and Hélder Silva Lopes	283
Part	t III Strategies and Solutions	
14	Planetary Health and Climate Change in the Anthropocene Jan Kunnas and Bruno Borsari	311
15	IDEAL: The 'Infectious Disease Transmission Climatic Suitability Index' Miguel Alves Pereira, Alexandre Morais Nunes, and Diogo Cunha Ferreira	327

Contents ix

16	The Imperative for Integrating Climate Change Concept into Universal Health Coverage Framework	345
17	Planetary Health Governance: A Tool of Transdisciplinary Collaborations for Sustainable Development Umar Ibrahim and Jason Prior	363
18	The SDG18 and the Two Cultural Purposes at Large: Towards a New Pillar of Sustainability? Paulo Castro Seixas, Ricardo Cunha Dias, Nadine Lobner, and Diogo Guedes Vidal	383
19	Past is Present: Climate Adaptation, Resilience, and Malaria in the Holocene Gwen Robbins Schug	405
20	Resilience as a Major Asset for Planetary Health: Taking an Integrative Occupational Approach Towards Climate Resilience Ursula M. Costa, Marie Boost, and Erio Ziglio	435
21	The Need to Connect Planetary Health and Climate Change Walter Leal Filho	453

Chapter 19 Past is Present: Climate Adaptation, Resilience, and Malaria in the Holocene

Gwen Robbins Schug

Abstract Planning for global warming requires an understanding of past climate change events, their impacts, and human strategies for resilience. From small-scale societies to urban civilizations, human communities have reorganized in the face of environmental change in a wide variety of typically unappreciated ways, which had diverse consequences for health. This chapter provides case studies of past Rapid Climate Change events, the social factors that shaped risk and responses, and the long-term impact of different choices on human health and well-being. The cases are focused on a One Health—or One Paleopathology—perspective on vector borne infections, particularly malaria. Archaeological data on malaria in the past demonstrate the full range of human diversity, the promise of communication, cooperation, Indigenous leadership, and stewardship in the pursuit of an equitable, sustainable, healthy future.

Keywords Climate adaptation • Equitable sustainability • Environmental health • Bioarchaeology • IPCC • UN sustainable development goals

Introduction: ONE Health, Planetary Health, and Paleopathology

Climate change poses a complex set of hazards for planetary health and security, not just for humans but for all species on Earth (Kemp et al. 2022; Solomon 2007; Woodward et al. 2014). Paradoxically, anthropogenic global warming is exceeding the magnitude and pace of all past Rapid Climate Change (RCC) events, yet the past is the best source of predictive power for understanding the impacts of rapid climate change on humans, animals, and our ecosystems (Burke et al. 2018; Ceballos et al. 2015; Rockman and Hritz 2020; Solomon 2007; Stephens et al. 2019) Accordingly,

Department of Biology, 310 Sullivan Building, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27402, USA e-mail: gmrobbin@uncg.edu

G. Robbins Schug (⊠)

the Intergovernmental Panel on Climate Change (IPCC) has argued that planning for a warmer world requires basic research to model the physical, social, and biological aspects of vulnerability and resilience (Doherty et al. 2009). Anthropology is a particularly important component of this modeling as our discipline integrates humanistic, social science, and scientific perspectives on human evolution that situate our species and our current predicament within a deep time perspective that recognizes the importance of nuanced historical, cultural, and ecological aspects to equitable sustainable development (Larsen 2023; Lewis et al. 2023; Robbins Schug et al. 2023).

ONE Health (OH) is an increasingly prominent global strategy for interdisciplinary research on intersecting aspects of environmental, animal, and human health (Kahn 2022; Kaplan et al. 2022). Initially conceptualized as ONE Medicine (Cassidy 2018), OH has been promoted by the World Health Organization for decades as a critical way to think about zoonotic infection risk (Bidaisee and Macpherson 2014; Bird and Mazet 2018; Cunningham, Daszak, and Wood 2017; Day 2010; Webster et al. 2016). Recently OH has also been applied to thinking about health risks in the face of global climate change—zoonotic disease spillover, food security, and toxic environments (Zinsstag et al. 2018). Paleopathologists and bioarchaeologists have also become interested in applying the OH perspective to past populations and questions about health in deep time (Buikstra 2023; Buikstra et al. 2022a, b; Buikstra et al. 2022a, b; Mitchell 2024; Rayfield et al. 2023), combining it with more established paradigms in anthropology such as biocultural theory (Agarwal and Glencross 2011; Blakey 1998; Blakey and Watkins 2022; Goodman 1999; Zuckerman and Armelagos 2011; Zuckerman and Martin 2016), the concept of epidemiological transition (Barrett et al. 1998; Cohen 1984; Harper and Armelagos 2010; Larsen 2018), and structural violence (Lans 2018a; de la Cova 2008, 2010, 2020, 2022; Lans 2018b, 2021, 2022; Mant et al. 2021; Mant and Holland 2019; Nystrom and Robbins Schug 2020; Watkins 2010; Rachel Watkins 2018; Watkins 2020).

However, in some ways, OH's promise is limited by its strong focus on medical and veterinary science, without much cross-over as of yet (David et al. 2021). Paleopathology too has largely remained deeply focused primarily on human health. While we broadly think about interactions with other species and ecological circumstances, our focus is not on basic research on health in other animals, plants, or environments. Thus, the concept of Planetary Health (PH) is an important framework for directing research in paleopathology as it is focused on combining priorities from OH with climate and environmental justice and informing policy for a more equitable sustainable future. OH has not traditionally included much of a focus on environment or policy (Essack 2018), while PH is unapologetically focused on the human future (Whitmee et al. 2015), particularly in the face of environmental and climate crisis (Horton et al. 2014), and in the hope of avoiding further depletion of Earth's resources and deepening a planetary level emergency (Garcia-Gonzalez et al. 2024). Human health is not distinct from the health of our planet. Bioarchaeology and paleopathology can contribute to PH goals as our research examines moments of crisis and disruption in past populations, characterizes the experience of resilience, and defines what parameters promoted recovery, adaptation, and growth after disruptive shocks in the past (Robbins Schug 2020a, b; Robbins Schug et al. 2019, 2023).

As a discipline within anthropology, paleopathology also deeply accounts for political, economic, and social dimensions of the Anthropocene, enriching the PH paradigm, which has been criticized for ignoring capitalism's role in creating our current crisis and blocking equitable sustainable solutions (Myers 2017). This chapter describes the intersections of PH, climate change, and paleopathology, focusing on malaria as this parasitic infection has been defined as one of our greatest future health challenges (Pruss-Ustun et al. 2006) and it has been a leading cause of childhood mortality for at least 5000 years (Kariuki and Williams 2020). This chapter reviews the current state of knowledge about malaria in human evolution and archaeology, addressing the growing risk of vector borne disease in the face of global warming and providing some examples of biocultural adaptations to the disease in the past and Indigenous and Local Knowledge (ILK) about malaria today. The goal is to introduce Planetary Health to paleopathologists to inspire research that is designed with policy makers in mind and to introduce paleopathology to those in the Planetary Health world, which will benefit from the deep time perspective on ILK and biocultural adaptation to disease in the face of a changing climate.

Malaria: The Natural History of a Growing Public Health Concern

Malaria, along with other vector-borne illnesses, is a major threat to human health and well-being worldwide, with over one billion people affected and one million annual deaths from the disease (WHO 2022). That threat is growing in the context of a changing climate and rising economic inequality. Today, malaria is widespread in Africa and parts of Asia due to socio-economic disparity, lack of access to adequate resources for treatment or even blood smear, antigen, and PCR tests (CDC 2020). However, the threat is rapidly expanding. Historically, the disease was also present in more temperate regions of the planet before 1950, when air conditioning, window screens, insecticides, drainage and public health infrastructure, and insecticides were widely employed to reduce mosquito population density, habitat, and access to humans (CDC 2020). Currently there is widespread concern about a resurgence of malaria with global warming extending warm temperatures across multiple seasons; changing patterns of rainfall, humidity, and frequency of extreme weather events involving drought and flooding; expanding the geographic range of suitable habitats for mosquitos and reducing the time to reproductive maturity for the Anopheles mosquito (Colón-González et al. 2021; Samarasekera 2023). Understanding these growing risks requires accounting for the natural history, evolution, and interactions of the pathogen, the host species, and the vectors.

Humans get malaria by infection with parasitic protozoans (*Plasmodia* spp.), which enter the blood stream through mosquito (*Anopheles* spp.) bites. The protozoa that cause malaria spend part of their lifecycle in the body of female mosquitos, who bite—humans and other mammals, birds, reptiles, amphibians, and fish—to get a

blood meal, a source of necessary amino acids for producing their eggs (Al-Rashidi et al. 2022). When female mosquitos ingest *Plasmodia* gametocytes in the blood of a human host, it alters their own patterns of behavior according to the sexual cycle of the parasite (Cator et al. 2014). In the mosquito host, the gametocytes mate in the gut of the mosquito, grow and multiply for 10–18 days, and then the sporozoites migrate to the salivary glands and the female mosquito becomes infectious (CDC 2020). During this pre-infectious period, the female mosquitos experience reduced attraction to feeding hosts, are less persistent in attempts to feed, they probe the host less frequently and for less time than during their infectious phase (Cator et al. 2014). Behavioral changes may be related to mortality risks to the mosquitos when feeding leading to parasite-host manipulation that favors feeding during infectious periods.

When a female mosquito does take a blood meal, the plasmodium sporozoites spread to the host. In mammals, they travel to the liver, where they go through the asexual part of their life cycle. At this point, they either become dormant hypnozoites or they mature into schizonts, which then rupture and release merozoites (CDC 2020). Merozoites infect red blood cells (RBCs) and these blood stage parasites are responsible for the symptoms associated with malaria in humans, as the parasite goes through multiple rounds of multiplication, invasion of RBCs, maturation, and infection (Schellenberg et al. 1994). This life cycle is shared among five species of protozoa that can cause malaria in humans (*P. falciparum*, *vivax*, *malariae*, *ovale*, and *knowlesi*). As humans, our risk is compounded by the fact that mosquitos that spread malaria also host a variety of other pathogens, leading to dengue, encephalitis, filariasis, yellow fever, and zika.

In human hosts, there is a life history component to the epidemiology of malaria that must also be considered. In areas with a high burden of malaria transmission today, breastfeeding infants are protected by maternal antibodies for the first few months of life. In malaria endemic areas, equatorial Africa and South Asia for example, childhood mortality is highest in the 2–5-year age category, after which repeated infections in endemic areas provide semi-protective acquired immunity (CDC 2020). In these areas, infants 6-24 months of age are at greatest risk for infection and typically also suffer from co-morbid anemia. In areas where malaria is not endemic, such as Latin America, epidemic outbreaks can occur because children and adults do not have this acquired immunity status (CDC 2020). Pregnant women are most susceptible to malaria in all regions because their immune systems are depressed. Malaria during pregnancy can lead to premature birth, low birth weight, and high infant mortality.

Vector mosquito species exhibit genetic preferences for feeding on specific animal hosts during the gonotrophic cycle—preferences that may be related to the length of time required to digest blood from different vertebrate hosts, and which affect the length of time for eggs to form, oviposition, the number of eggs, and hatch rates (Al-Rashidi et al. 2022). While mosquitoes express preferences for feeding on certain species, they will regularly bite other animals who then acquire parasitic plasmodia that do not typically infect their taxon. For example, Great African Ape *Plasmodium* species are transmitted by *A. vinckei, moucheti, and marshallii* (Obame-Nkoghe et al. 2023; Prugnolle et al. 2013) and all three of these species will also bite *Homo sapiens*

(Loy et al. 2017). Cross-species transmission of *Plasmodium spp*. has been reported among humans, chimpanzees, and gorillas (Contacos 1970; Loy et al. 2017, 2018; Paupy et al. 2013; Plenderleith et al. 2022; Prugnolle et al. 2013; Rayner et al. 2011). *Plasmodium* infection can lead to fever and anemia in Great African Apes, with the greatest fecal parasite burden occurring in the pregnant females and immature animals, but the parasite often does not cause severe disease and acquired immunity may have facilitated zoonotic reservoir effects in the past (Loy et al. 2018).

In fact, this phenomenon shaped the evolution of *P. falciparum* to become the most highly prevalent malarial pathogen in sub-Saharan Africa and the greatest cause of most human morbidity and mortality related to malaria in that region (Bhatt et al. 2015; WHO, n.d.). This species is presently an obligate parasite of humans but its genome demonstrates this was not always the case. P. falciparum is most closely related to *P. reichenowi*, which causes malaria in chimpanzees (Escalante and Ayala 1994; Rich et al. 2009). Previous work suggested P. falciparum jumped to humans from infecting members of a different ancestral ape lineage that led to Gorillas anywhere from hundreds of thousands of years ago (Hughes and Verra 1998) to as little as 50,000 years ago from an ancestral lineage (*P. praefalciparum*) (Sundararaman et al. 2013, 2016). Recent evidence contradicts this view, suggesting this parasite jumped to human hosts much more recently, within the past 10,000 years (Liu et al. 2010; Loy et al. 2018). Whenever the leap occurred, it has been highly successful since then, spreading to live in 70 species of Anopheles mosquito (Molina-Cruz et al. 2016). The evolution of host preference in *P. falciparum* explains a large part of its historical and modern distribution in human populations (Uhl and Thomas 2022).

Planetary Health: Malaria in the Context of a Changing Climate

The PH framework recognizes that contemporary human demographic and epidemiological patterns depend not only on evolutionary history and biological factors but also on human behavioral and social factors. To address disease risk, we must examine the policies and practices that undermine an equitable sustainable future and which could limit the potential for future generations of human societies to flourish. In other words, topics for OH and PH research overlap but PH seeks to meaningfully address conceptual, informational, and governmental failures that prevent meaningful policy changes to ensure human survival and resilience. PH has a goal of ensuring the "highest attainable standard of health, wellbeing, and equity worldwide through judicious attention to human systems—political, economic, and social—that shape the future of humanity and the Earth's natural systems" (Whitmee et al. 2015). This chapter combines PH with paleopathology to outline the biological and evolutionary factors that promote the spread of disease, its history in human communities over the long term, the biocultural and social factors that promoted spread of malaria

in prehistory, and why we need to shift to a framework that empowers local and Indigenous communities to eradicate disease.

A PH and paleopathology approach to malaria is particularly critical in this time of extreme anthropogenic global warming because biologically and socially speaking, pathogens, vectors, and hosts are all deeply impacted by both extreme weather events and longer term trends in average surface temperatures and patterns of rainfall. Although malaria is currently endemic in tropical and sub-tropical regions of the Earth, historically, epidemics of malaria have also impacted temperate and boreal ecozones (Gething et al. 2011). The contemporary distribution of the disease is largely shaped by mosquito-breeding control efforts over the past century, malaria treatment, and eradication programs. When modeling suitable habitats for malarial parasites and their mosquito vectors in the future, we do better to assume that the historical distribution reflects a more accurate representation of suitable habitat given these control measures could be overwhelmed in the future (Ostfeld and Keesing 2020).

With the present 1.4 degrees Celsius of warming, we are already seeing strong impacts on the epidemiology of malaria (Kulkarni et al. 2022; Samarasekera 2023). Warmer temperatures affect the natural history, reproductive cycles, and behavior of the parasites and the vectors in ways that favor disease transmission (Caminade et al. 2014, 2016, 2019). For example, the worst-case regional scenario (RCP 8.5) in sub-Saharan Africa will put an additional 76 million people at risk of malaria infection by 2080, and that is only considering risks from *P. falciparum* (Ryan et al. 2020, 2023). Warmer temperatures and changing patterns of rainfall will increase transmission of malaria in highland areas of sub-Saharan Africa, Asia, South America, the Pacific and Mediterranean, where the disease is already endemic (Karypidou et al. 2020; Ryan et al. 2020). Mosquito population habitats are already starting to expand into Global North areas not usually affected by malaria—North America, Europe, north Africa, and northern Asia (Fletcher 2022; Kulkarni et al. 2022; van der Watt et al. 2022a, b).

Extreme weather events—flooding and El Niño events in particular—have recently led to malaria epidemics in Pakistan and Mozambique as well as transmission events in the United States, Ethiopia, and Columbia (Samarasekera 2023). These events are predicted to worsen over time as global mean surface temperatures (GMST) climb to levels not seen for millions of years (Steinthorsdottir et al. 2021; Von Der Heydt 2022). Earth's natural cycles have brought global cooling for approximately 65 million years and with that, a commensurate decline in atmospheric CO₂ levels. Our current GMST has already surpassed the warm period in the mid-Holocene (Marcott et al. 2013). Further warming is expected as the present 400 ppm of atmospheric CO₂ has not been seen since the mid-Pliocene period (3 million years ago), when Earth's GMST was 1.8-3.6 °C cooler than pre-industrial temperatures (Burke et al. 2018). Within the next century, if we do not address the causes of global warming, we face a climate more similar to that of the Eocene, 50 million years ago, when atmospheric CO₂ was 1400 ppm, GMSTs were 13 °C warmer than the present, there were no permanent ice sheets, and sea level was 25 m above the present (Burke et al. 2018; Miller et al. 2020).

Even in the near future, with changes of lesser magnitude, climate change may present opportunities for spillover of other mosquito-borne pathogens, like arborviruses that do not currently have significant impacts on human communities (Mordecai et al. 2020). Arborviruses, like dengue and chikungunya are transmitted by *Aedes aegypti* and represent another growing threat to urban communities in sub-Saharan Africa. Some researchers have argued that specific prediction scenarios for climate change there may favor transmission of these pathogens over malaria as the vector's peak transmission rate is at 29 °C compared to 25 °C for malaria transmission by *A. gambiae* (Mordecai et al. 2020). Because many efforts at disease prevention are specifically focused on malarial pathogens, their vectors, and human social conditions that facilitate the spread and severity of this disease, other pathogens may be able to gain ground in establishing themselves and thriving in human populations.

Zoonotic spillover of *Plasmodium spp.* that do not currently infect humans, but which cause disease in our closest living relatives is also a growing threat with deforestation, altered ecosystem dynamics, global warming, and other environmental and climate changes (Cuenca et al. 2021). Currently, we know of 13 *Plasmodium spp*. in Asia, seven in Africa, and two in South America that infect mosquito species that preferentially feed on simians—monkeys and apes—and which are thus candidates for zoonotic spillover (Fig. 19.1). P. schwetzi in Africa; P. cynomolgi, inui, knowlesi, and eylesi in Asia; and both P. Simium and P. brasilianum in South America have been documented to also infect humans in lab or natural environments (Antinori et al. 2021). Climate change, socio-economic factors, and extreme weather events, such as the El-Niño Southern Oscillation (ENSO) events in South America and monsoon in South and East Asia are expected to drive transmission among primates in this areas, leading to greater opportunity for spillover events and pathogen evolution (Abiodun et al. 2020; Alam et al. 2016; Baghbanzadeh et al. 2020; Brugueras et al. 2020; Dhimal, Ahrens, and Kuch 2015; Mabaso and Ndlovu 2012; Yi et al. 2019). Reconstructing the co-evolution of mosquitos, plasmodia, and hominins is a critical part of preparing for greater threats from malaria in a warmer world (Antinori et al. 2021; Cuenca et al. 2021; Faust and Dobson 2015; Fornace et al. 2023; Lempang et al. 2022; Naserrudin et al. 2022; Van De Straat et al. 2022).

Falciparum malaria itself arose as a threat to human communities in the context of a changing climate and new spillover events have been recently documented and spillover is considered a growing threat to previously successful malaria eradication programs in the Global South. The disease was considered eradicated in southern and southeastern Brazil until it was recently recognized in 28 patients who had had contact with howler monkeys in the Atlantic Forest (Brasil et al. 2017). Zoonotic transmission of *P. simium* is not the only recent example; *P. knowlesi* is another species of malarial parasite that usually affects macaques and has now been identified in more than 100 cases of malaria in people belonging to the Iban ethnic group in Kapit, Borneo (Singh et al. 2004). While these two species have been on the public health radar for more than 50 years (Chin et al. 1965; Deane, Deane, and Neto 1966), we are now witnessing autochthonous malaria cases arising more frequently from monkey-mosquito-human transmission of these pathogens on an epidemiologically visible scale.

Fig. 19.1 Global distribution of non-human simian *Plasmodium spp.* that have potential for malaria spillover into human hosts. Adapted from data in Antinori et al. (2021)

Malaria Has Been a Planetary Health Crisis for 10,000 years

Zoonotic spillover is an important force driving risk of malaria but biocultural and social change has been equally impactful in the evolution and natural history of this disease. Climatic stability is the force responsible for the current state of evolution of *Homo sapiens*. We have occupied a stable environment for the past 12,000 years and this stability enabled settled lifestyles, domestication and food production, urbanism, and eventually the conditions for global warming (Larsen 2023). Genetic data suggests malaria has been an influential human disease for most of that time, occurring in association with climatic and socio-cultural shifts at the Holocene epoch's opening (Liu et al. 2010). P. falciparum exhibits low levels of genetic diversity compared to P. gaboni and reichenowi (Bopp et al. 2013; Loaiza et al. 2012; Sundararaman et al. 2016) indicating a recent population bottleneck, approximately 10ky BP (years ago) (Carter and Mendis 2002; Conway et al. 2000; Hedrick 2011; Loy et al. 2018). The parasite may have undergone strong selection just as our species began interacting with landscapes, plants, and other animals in new ways—at the incipient stages of animal domestication, deforestation, agricultural production, and new levels of migration (Hartl et al. 2002).

P. vivax, on the other hand, seems to have had a more convoluted evolutionary history (Ananias A. Escalante et al. 2005; Loy et al. 2018; Neafsey et al. 2012; Tachibana et al. 2012). It is an endemic parasite in African apes and similar genetically to *P. simium*; it has recently been argued it may have jumped to infecting humans from contact with New World Monkeys in Central and South America (Antinori et al. 2021). This transition may have been facilitated by the parasite's natural history—with a long dormant stage in the host liver (Uhl and Thomas 2022). The ability to remain dormant for extended periods of time means these two plasmodia can survive

in smaller, more rural populations and can remain infectious to mosquitos even after their human hosts took long journeys to travel to new areas of the world.

Evidence from human skeletal remains demonstrates *P. falciparum* malaria has had substantial health impacts in human communities for at least seven millennia. Genetic data confirms this disease has been the strongest known selective pressure on the human genome, driving the prevalence of genetic anemias in *Homo sapiens* (Lee and Coban 2018; Tishkoff and Williams 2002; WHO, n.d.) since the disease was promoted by anthropogenic climate and environmental changes associated with plant and animal domestication, subsistence transition to agriculture, and most importantly, increasing population density and urbanism in human communities (Bianucci et al. 2008; Grauer 2019; Lalremruata et al. 2013; Larsen 2023; Marciniak 2016; Nerlich 2016; Nerlich et al. 2008; Sallares and Gomzi 2001; Schats 2023; Shin et al. 2018; Smith-Guzmán 2015a; Zink et al. 2002).

The earliest skeletal evidence for *P. vivax* is in the Joseon Dynasty, Korea (1392–1910 CE), where it shows up alongside increased population growth rates and settlement density after the domestication of rice and millet (Shin et al. 2018). *P. falciparum* is in evidence much earlier, in ancient Egypt (2820–2630 BCE) (Bianucci et al. 2008). Malaria thrived in the New Kingdom (1500–500 BCE) because of the high-density urban environments (Nerlich et al. 2008), innovations such as irrigation (Lalremruata et al. 2013), and heightened social inequality. This would have been a devastating disease for the human population. Malaria symptoms include fever, chills, muscle aches, headache, tiredness, nausea, vomiting, diarrhea, and in some cases anemia, jaundice, kidney failure, seizures, confusion, coma, and death (CDC 2020; WHO 2021). Even with modern medical treatment, this disease remains a leading cause of childhood mortality, contributes to syndemics globally, leads to long-term sequelae and health impacts.

Beyond skeletal evidence for the earliest impacts of this disease, paleopathological analysis of ancient texts from the Bronze Age in China, Egypt, and India provide a sense of prehistoric Indigenous and Local Knowledge (ILK) about recurrent fevers and what might have been malaria (Dagen 2020). The earliest textual references to a disease like malaria are from the Chinese medical treatise, *Nei Cheng* (2700 BCE), which describes paroxysmal fevers combined with splenomegaly; urine color was also used to diagnose the disease by the Tang Dynasty (618–907 CE) (Wu et al. 2013). The *Atharva Veda* describes the disease in South Asia during the second millennium BCE, relating details about the habitat, mouth parts, and behavior of mosquitoes (*Maśaka*); describing the parasite and the fevers (*takman*) it caused (Kaur and Singh 2017). This text also describes control of mosquitos in different life stages and the treatments for malaria using fragrant grasses and herbs. Interestingly, the *Atharva Veda* not only describes grassy, overgrown habitats as a breeding ground for mosquitoes, but the text also attributes malarial habitats to dirty and unsanitary living conditions.

The Eber's Papyrus documents the disease and its impacts on the New Kingdom of Egypt, although, as discussed below, studies of human remains offer more direct evidence for the presence of the disease in ancient Egypt (Miller et al. 1994). Cuneiform tablets demonstrate the disease was recognized as causing deadly fevers

in Mesopotamia by the sixth century BCE (Major 1954). There it was attributed to a mosquito-like God of Pestilence (Dagen 2020). Hippocrates also documented recurrent fevers in the late summer, early autumn in the low lying marshes of Greece. The Roman author Varro, writing in the second century BCE, recommended moving homes to more elevated parts of the city to take advantage of breezes that would lessen biting insects and Columella suggested in the 1rst century AD that it was these "stinging creatures" that spread disease in the marshy areas of the settlement. At that time, malaria caused by *P. malariae*, *vivax*, *and falciparum* was endemic and the greatest effects were felt by men in the military, slaves, and the poor who occupied the marshy areas of the city (Dagen 2020).

These sources demonstrate social determinants of health played a very influential role in the impact of malarial parasites in the past as they do today. Lifestyle changes related to settled village living and urbanization were also accompanied by social inequality and structural violence. In the present, these are compounded by capitalism and colonialism, which not only create conditions where parasites are more easily transmitted, they also magnify the impacts of sequelae. This is evidenced, for example, by the epidemiological patterns of malaria in the Roman Empire (Beard 2015; Bourbou 2020; Gowland and Western 2011; Llanos-Lizcano et al. 2024; Loufouma Mbouaka et al. 2021; Marciniak 2016; Marciniak et al. 2018; Packard 2021), Late Antique and Medieval Europe (Newfield 2016; Wilson et al. 2023), and in Medieval England (Perry and Gowland 2022; Robb et al. 2021). It is further in evidence in Roman period Egypt (Lalremruata et al. 2013) where malaria was co-morbid with M. tuberculosis infection, a pathogen well understood to be most prevalent in disadvantaged segments of society, whose epidemiology is influenced by over-crowded conditions, poor sanitation, and reduced access to resources (Roberts and Buikstra 2003). The combined impact of malaria, comorbid conditions, and social inequality make this the ultimate syndemic disease.

Paleopathological data is important for understanding the types of biocultural and social environments that make malaria more devastating throughout history but it does have limitations. The deep-time history of malaria is difficult to trace. The disease does not directly impact human bone tissue, so paleopathologists have typically studied this disease through lesions related to a sequala of malaria infection, chronic acquired anemia (Brickley 2024). Immunological assays of human skeletal remains (Nerlich 2016) have supported the idea that paleopathologists can diagnose anemia in past populations through the presence of porotic lesions in human skeletons that result from systemic infection, chronic inflammation, and fever. The five skeletal lesions commonly associated with anemia (Smith-Guzmán 2015b) are porotic hyperostosis of the parietal and occipital bones, *cribra orbitalia*, abnormal porosity on the humerus, femur, and vertebral bodies (including the sacrum) (Fig. 19.2). However, these lesions are also asociated with numerous other metabolic and infectious diseases.

Recently progress has also been made in detecting malaria in past populations through paleomolecular techniques that have provided direct evidence of *P. falci-parum* infection in ancient human skeletal remains (Bianucci et al. 2008; Gelabert et al. 2017; Khairat et al. 2013; Lalremruata et al. 2013; Llanos-Lizcano et al. 2024;

Fig. 19.2 Diagrammatic representation of porous lesions associated with anemia and used with contextual data on paleoenvironments to infer malaria in paleopathology. Shown here are *cribra orbitalia* affecting the orbit, porotic hyperostosis affecting the parietals, humeral and femoral *cribra*, and spinal porosity on the sacrum

Loufouma Mbouaka et al. 2021; Marciniak et al. 2018; Nerlich et al. 2008; Sallares and Gomzi 2001; Timmann and Meyer 2010). The *Plasmodia* can only be detected in cases of well-preserved bone tissue that is carrying a large parasite burden that will yield a large amount of DNA. Paleogenetic techniques have led to diagnoses of malaria in historical, modern skeletal tissue, Roman skeletons, ancient Egyptian and Nubian skeletal and mummified people; and potentially, in Bronze Age tombs in the Mediterranean (Setzer 2010). It is unfortunate that molecular techniques have been inconsistently successful but with additional research on museum collections, there is hope for technical advances that will make this more practical in the future (Brickley 2024).

Malaria's prehistoric distribution and endemicity can also be inferred in archaeological human remains due to the presence of genetic anemias that result from co-evolutionary processes facilitated by anthropogenic environmental and landscape changes first visible on Earth with the advent of widespread reliance on agricultural production (Larsen 2018, 2023). Land clearance favors mosquito reproduction as it is often associated with stagnant water and it often leads to reductions in mosquito diversity, favoring species that transmit disease (https://e360.yale.edu/features/how_forest_loss_is_leading_

to_a_rise_in_human_disease_malaria_zika_climate_change). Phenotypic variation in human red blood cell (RBC) structure and function influences the risk of developing symptoms of severe disease (Haldane 1949; Kariuki and Williams 2020). The evolution of genes responsible for this variation, sickle cell anemia, thalassemia, G6PD (glucose-6-phosphatase) deficiency, and variants in receptor proteins and blood group membrane proteins are all attributed to malaria's spread and endemicity in parts of Afro-Eurasia (Kariuki and Williams 2020).

The analysis of the epidemiology of genetic anemias also confirms that agricultural production is a prime driver of this disease, but agriculture is not the only malarial environment for humans. Based on evidence for skeletal changes—anthroposcopic and histological—associated with alpha and beta thalassemia for example, there is evidence that malaria may have been a significant health problem in northern Vietnam 7000 years ago due to population growth, reduced residential mobility, land clearance, irrigation, and other anthropogenic changes associated with horticulture, not agriculture (Vlok et al. 2021). Thalassemia is a genetic anemia that exists in high prevalence in this region today, with as much as 80% of the human population carrying genes associated with this condition in parts of South and Southeast Asia, in areas where malaria is endemic (Hockham et al. 2019). Even small landscape modifications can increase the risk of mosquito-borne pathogens.

In the past 7000 years, human populations and our domesticates have also increasingly been on the move, with trade contacts and migration bringing new opportunities for disease spillover and epidemics (Robbins Schug and Halcrow 2022) as well as bringing genetic anemia variants related to malaria to new areas. Recently four whole genomes from Arabia were sequenced from skeletal tissue from Dilmun, or ancient Bahrain (600–325 BCE), that demonstrate a deep history for disorders related to G6PD deficiency (Martiniano et al. 2024). Three of the four individuals studied provided evidence consistent with the hypothesis that the mutation was introduced to the Bronze Age Arabian population at Dilmun through population mobility, specifically trade contacts with Bronze Age Mesopotamia, Iran, and/or South Asian groups (Possehl 2007). These results support prior suggestions that malaria was already endemic in South Asia in the Bronze Age (Lovell 1997, 1998, 2016). These data are also supported by skeletal evidence for porotic hyperostosis and cribra orbitalia in infants and young children's skeletal remains at Bronze Age Dilmun and Harappa (Littleton 2011; Robbins Schug and Blevins 2016).

Biocultural Adaptations to Malaria in the Past and Present

The evolutionary and paleopathological data presented here demonstrates that social determinants and biocultural environments have always been influential in the spread of malaria. Anthropological research in living global communities indicates some variables that increase susceptibility relate to individual choices—consistent use of mosquito netting, insecticides, environmental control measures, and health careseeking behavior (Monroe et al. 2021). However, individual choices do not exit in a

social vaccuum. There is an influential aspect of social pressure in malaria control, particularly dealing with mothers' perceptions, attitudes, and behaviors related to disease control (Cardona-Arias 2022). Importantly, effective prevention and treatment also requires consideration of economic conditions and resources; structure, function, and access to healthcare systems; capitalistic control over anti-malarial drugs; and other socio-cultural and geographical factors that promote inequitable access (Cardona-Arias 2022; Kienberger and Hagenlocher 2014; Onyango et al. 2016; Ricci 2012). For this reason, to understand societal adaptive response capacity in the present and to drive effective policy change in the future requires an understanding of local power and money dynamics as influential actors as well as the power exerted by global experts and development organizations, which can change local dynamics considerably, often without accountability (Parkhurst et al. 2021).

This recognition has created growing interest in combining scientific and other Western ways of knowing with ILK about weather and ecosystems, traditional adaptations to climate and environmental change, and strategies for resilience (Leal Filho et al. 2022). Globally, Indigenous people (5% of the global population) are actively working to conserve forests and protect biodiversity on around 25% of the world's land mass (Garnett et al. 2018). Overall, these lands protected by Indigenous stewards are in better health than surrounding areas (Dawson et al. 2021; Heller et al. 2023) yet the customary rights of Indigenous peoples to the land they protect are rarely respected or codified and, in some cases, traditional livelihoods are criminalized, and Indigenous people are displaced or forced into meager subsistence (Bijoy et al. 2022). In some ways, a focus on ILK could shift power dynamics to exert authority in prediction scenarios for the global North. It is critical that scientists who want to participate in these alternative systems are not simply extracting information for their own purposes but also work to ensure Indigenous peoples rights, roles, and contributions are recognized (Bijoy et al. 2022).

There has been a strong research focus on ILK about ethnopharmacology for a relatively long time. Quinine was a treatment for malaria in the early nineteenth century but its origins trace back to Indigenous Peruvians, who were using cinchona bark to treat fevers when the Spanish arrived in the sixteenth century (Crawford 2016). Artemisinin is an anti-malarial medication isolated in the late twentieth century but Chinese physicians have used Artemesia annua for malaria treatment going back to the second century BCE (Tu 2017). Artemisinin-based treatments are still the first line of treatment in Western medicine today. ILK retains promise for new treatments. Among the Baniwa, Baré, Desan, Piratapuia, Tariana, Tukano, Tuyuca, and Yanomami peoples of the Brazilian Amazon Forest, there are at least 55 plants known to prevent or treat malaria and fevers associated with malaria (Frausin et al. 2015). Taxa used for prophylaxis and antimalarial remedies are grown in a variety of circumstances; 62% are domesticated and cultivated in small family and community gardens, or open and cleared areas. Some of these species have been studied scientifically, the majority have yet to be investigated. Sadly, those species that grow wild in the forest or in areas difficult to access are negatively impacted by deforestation and mining so collaboration with Indigenous people to understand the activity of these plants is an urgent priority in the face of climate and environmental change.

However, there is another important aspect that requires additional attention and that is ILK about traditional medicine and why it is sometimes preferred over Western medicine and pharmaceutical derivatives. Despite Universal Health Care being available in Uganda for example, traditional medicine is perceived as less expensive, more easily accessible, and culturally accepted as safe and effective in the treatment of malaria (Tabuti et al. 2023). The transmission and symptoms of this disease are well understood among Indigenous people in Tororo District, where malaria is endemic and more than 45 locally available plants can remedy the symptoms of the disease. In this case as well as the Brazilian case above, fewer than half of these plants have been scientifically investigated. Local and Indigenous perceptions and beliefs about the natural versus supernatural aspects of the disease also determine the type of medicine that will be sought. When malaria is believed to have natural and supernatural parts to its etiology, local traditional healers and remedies are more likely to be prioritized (Al-Adhroey et al. 2010; Joshi and Banjara 2008).

Recently, there has also been critically important research attention on assessing ILK of zoonotic transmission and how animal species may also be useful for therapeutics (see discussion above of Friant et al. 2022; Munajat et al. 2021; Naserrudinet al. 2022). For example, when hunter-gatherers in Orang Asli, Peninsular Malysia were asked about this topic, the majority of people understood that mosquitoes transmit the disease and almost half of the participants related transmission to the presence of non-human primates near households, knowledge which is negatively correlated with prevalence of disease (Munajat et al. 2021). Indigenous hunters and gatherers are routinely exposed to malaria. Assessing their knowledge of zoonotic routes of transmission is as important for eradication as understanding the traditional and other methods they use in prevention and treatment of the disease. A recent study involving four ethnic groups in Nigeria analyzed ILK about zoonotic diseases and interactions with 44 different animal species as well as a survey of zootherapeutics (Friant et al. 2022). This study reported that these four communities had knowledge of 172 medicinal uses for animals and animal parts, involving 44 different species of wild and domesticated animals, including zootherapies for malaria. Contact with animals mitigates and may exacerbate exposure risks for zoonotic spillover particularly when human groups are seeking out non-human primates for their use as medicine, and particularly when seeking those that are already exhibiting symptoms of disease.

Scholars have also begun documenting ILK about zoonotic spillover and disease prevention through human-plant interactions. For example, a recent survey of rural communities in Sabah, Malaysia that are dealing with malaria infections caused by *P. knowlesi* revealed they had no misconceptions about this disease, its relationship to local primates, and how to effectively use local plants to prevent spread of the disease (Naserrudin et al. 2022). Interviews with local people demonstrated their understanding that the disease was related to environmental factors, including agricultural expansion and deforestation that had increased contact with macaques and risk of mosquito bites. The community also had an extensive repertoire of traditional and other preventative practices already in place, from preventing stagnant water to burning leaves and coconut fiber to produce smoke and repel mosquitoes. They

reported planting specific species around their homes to act as mosquito repellants and using some plants, such as lemongrass, as a lotion to repel mosquitoes.

ILK systems are also slowly being operationalized into public health efforts to control the spread of malaria as well. In Zimbabwe, ILK about the relationship between malaria, weather (temperature and rainfall), and environmental indicators (plant and animal behavior and cosmological variables) have been used to create an early warning system to prevent epidemic malaria (Macherera et al. 2017). This kind of hybrid knowledge formation is critical not just for management of diseases but for widespread disaster mitigation in general (Mutasa 2015). There is a lot of potential for ILK systems (past and present) to inform efforts to treat malaria more effectively in the global context, to control malaria's spread, avoid zoonotic spillover, and understand all of these vulnerabilities more completely. This is an important growth area for policy makers and organizations seeking to have an impact on this disease in the Anthropocene.

Conclusion

Appreciating the long history of malarial infection and the deep value of ILK systems will be pivotal for creating an equitable sustainable future. These often-overlooked systems hold the key to understanding social determinants of health and well-being, biological evolution, and climate-driven interactions. This chapter reviewed selected literature to describe a planetary health approach to malaria that could integrate anthropological, biological, and climate science evidence for the transmission and spread of the disease in the past, present and future. Interdisciplinary approaches are not just beneficial but will be essential to understand the longstanding relationship and complex interactions between malarial pathogens, their vectors, and the human-environmental nexus. Biological anthropology has a lot to offer in regard to understanding human-pathogen evolution, risks related to zoonotic spillover, and the natural history of malaria as we integrate ancient textual sources (Newfield 2016; Perry and Gowland 2022; Shin et al. 2018; Wilson et al. 2023), molecular evidence for infection and co-evolutionary processes (Brickley 2024; Escalante and Ayala 1994; Hedrick 2011; Loy et al. 2017; Schats 2023; Taylor et al. 2012), and direct evidence from ancient human remains (Llanos-Lizcano et al. 2024; Wilson et al. 2023) to provide a deep source of data for predictions about the future of health in human societies.

There are limitations to paleopathological understanding of malaria, including the challenges of differential diagnosis in the skeleton (Brickley 2024), finding evidence for the plasmodia in ancient human remains, and the interpretation of textual sources (Mitchell 2017). The porotic lesions we use to diagnose the possibility of malaria in human remains are widespread in archaeological human skeletons; they result from a variety of different diseases and other disruptions to homeostasis; and there is thus no consensus on their diagnostic specificity. Assessments of *cribra orbitalia* and porotic hyperostosis are more effective when combined with paleoclimate and

paleoenvironmental data and archaeological information about population density and anthropogenic changes to the landscape (Bourbou 2020; Gowland and Western 2011; Robbins Schug 2020b; Robbins Schug et al. 2023; Schats 2023; Vlok et al. 2021). For skeletal lesions and in the case of textual sources, a deeply contextualized analysis is critical because anemia or recurrent fevers are not necessarily due to malaria. Combining the assessment of skeletal lesions with evidence for marrow hypertrophy is also useful in distinguishing acquired anemia from other conditions that can cause porotic lesions and for individuals who have anemia but do not develop porotic lesions (Brickley 2024). Using original texts (not modern translations) and being clear about limitations to different sources of evidence is an important part of rigor in our discipline (Mitchell 2017).

Local and Indigenous Knowledge systems about the nature of a disease, its transmission, treatment, and relationship to environmental and climatological factors have been and will be critical for the future of infectious disease eradication, including malaria (Agozino 2017; Cáceres et al. 2017; Cohen 2019; Frausin et al. 2015; Kader Maideen et al. 2022; Macherera, Chimbari, and Mukaratirwa 2017; Malatji 2022; Munajat et al. 2021; Munguti 1997; Odonne et al. 2021; Phoobane and Masinde 2023; Tabuti et al. 2023; Zakariya et al. 2021). There is a lot of work to be done if paleopathology is to contribute knowledge in a way that is useful to public health and PH communities. These projects will necessarily be large in scope and will require dedicated resources of time and effort. One example of a promising research agenda can be found in recent work by Leal Filho and colleagues (Leal Filho et al. 2022), who conducted a literature review of ILK about climate change and adaptation strategies for food security. They tabulated ILK for its direct application for policy purposes. Such work has yet to be conducted for ILK about disease and its impacts but such an effort has promise for ensuring a more equitable sustainable approach to health in the face of a changing climate.

Malaria is a growing threat to human health, but it is not a standalone issue. It is part of a suite of significant challenges that humanity is now facing, including a growing human population faced with urbanization, socioeconomic inequality, structural violence, habitat loss and fragmentation, and a mass extinction event that is accelerating. Loss of plant diversity and forest destruction has an impact on malaria transmission (Biswas et al. 2023; Burkett-Cadena and Vittor 2018; Ellwanger et al. 2022; Gottdenker et al. 2014; Guégan et al. 2020; Mancini et al. 2024; Ortiz et al. 2021; Whitmee et al. 2015; Yasuoka and Levins 2007). Ethical, equitable, sustainable solutions to this nexus of problems have been difficult to enact, particularly in the face of changes driven by a corposystem in opposition to the biosystem, over consumption, growth, and greenwashing false solutions to the crisis (Lamoreux and Bennett 2024). Community engaged anthropological research can report solutions to the growing malaria crisis that are designed and implemented in conjunction with Indigenous communities and under their leadership. Indigenous people not only steward the land and ecosystems of malarial areas, but they are also frequently the most affected by communicable diseases like malaria. Participant observation can develop sustainable anti-malaria interventions that protect broad swaths of a country's population because

they are designed with respect and honor to cultural beliefs and traditions about religious, magical, and natural elements of malaria (Cáceres et al. 2017).

We urgently need to reprioritize our actions toward sustainability, ethical cooperation and engagement, and peaceful political and economic forms and PH offers a vehicle for doing this. Public health is not just a sector; it is also a powerful vehicle for communicating the urgency of the threats posed by global warming and for catalyzing social change. We must leverage it to its full potential. In conclusion, we must remember that rapid climate change and comprehensive societal reorganization is not just possible, it has been a pivotal part of human history. It is not a question as to whether it is possible to change; rather, it is a question as to when we began to doubt our ability to adapt and overcome. Resilience is a key feature of human evolution and our future depends on respect for and acknowledgement of the adaptable nature of our species.

References

Abiodun GJ, Adebiyi B, Abiodun RO, Oladimeji KE, Oladimeji AM, Adeola OS, Makinde KO, Okosun R, Djidjou-Demasse YJ (2020) Investigating the resurgence of malaria prevalence in South Africa between 2015 and 2018: a scoping review. Open Public Health J. https://doi.org/10.2174/1874944502013010119

Agarwal SC, Glencross BA (eds) (2011) Social bioarchaeology, 1st ed. Wiley, London. https://doi. org/10.1002/9781444390537

Agozino B (2017) Indigenous knowledge systems and innovations in malaria control in Nigeria. J Immuno Virol 2(2):1–6

Al-Adhroey AH, Zurainee MN, Hesham M, Al-Mekhlafi R (2010) Opportunities and obstacles to the elimination of malaria from Peninsular Malaysia: knowledge, attitudes, and practices on malaria among Aboriginal and rural communities. Malar J 9(137):1–6. https://doi.org/10.1186/1475-2875-9-137

Alam MS, Kabir MM, Hossain SN, Naznin F, Ali W, Mondal D et al (2016) Reduction in malaria prevalence and increase in malaria awareness in endemic districts of Bangladesh. Malar J 15(1):552. https://doi.org/10.1186/s12936-016-1603-0

Al-Rashidi HS, Alghamdi KM, Al-Otaibi WM, Al-Solami HM, Mahyoub JA (2022) Effects of blood meal sources on the biological characteristics of Aedes aegypti and Culex pipiens (Diptera: Culicidae). Saudi J Biol Sci 29(12):103448. https://doi.org/10.1016/j.sjbs.2022.103448

Antinori S, Bonazzetti C, Giacomelli A, Corbellino M, Galli M, Parravicini C, Ridolfo AL (2021) Non-human primate and human malaria: past, present, and future. J Travel Med 28(5):taab036. https://doi.org/10.1093/jtm/taab036

Baghbanzadeh M, Kumar D, Yavasoglu S, Manning S, Hanafi-Bojd AA, Ghasemzadeh H et al (2020) Malaria epidemics in India: role of climatic condition and control measures. Sci Total Environ 712:136368. https://doi.org/10.1016/j.scitotenv.2019.136368

Barrett R, Kuzawa CW, McDade T, Armelagos GJ (1998) Emerging and re-emerging infectious diseases: the third epidemiologic transition. Annu Rev Anthropol 27(1):247–271. https://doi.org/10.1146/annurev.anthro.27.1.247

Beard M (2015) SPQR: history of ancient Rome. Profile Books Ltd., Great Britain

Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U et al (2015) The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526(7572):207–211. https://doi.org/10.1038/nature15535

- Bianucci R, Mattutino G, Lallo R, Charlier P, Jouin-Spriet H, Peluso A et al (2008) Immunological evidence of Plasmodium falciparum infection in an Egyptian child mummy from the Early Dynastic Period. J Archaeol Sci 35(7):1880–1885. https://doi.org/10.1016/j.jas.2007.11.019
- Bidaisee S, Macpherson CN (2014) Zoonoses and one health: a review of the literature. J Parasitol Res 2014:1
- Bijoy CR, Chakma A, Guillao JA, Hien BH, Indrarto GB, Lim T, Min NE, Rai TB, Smith OA, Rattanakrajangsri K (2022) Nationally determined contributions in Asia: are governments recognizing the rights, roles, and contributions of Indigenous peoples? https://policycommons.net/artifacts/3844722/nationally-determined-contributions-in-asia/4650677/
- Bird BH, Mazet JAK (2018) Detection of emerging zoonotic pathogens: an integrated One Health approach. Annu Rev Anim Biosci 6(1):121–139. https://doi.org/10.1146/annurev-animal-030 117-014628
- Biswas JK, Mukherjee P, Vithanage M, Prasad MNV (2023) Emergence and re-emergence of emerging infectious diseases (EIDs): looking at 'One Health' through the lens of ecology. In: Vithanage M, Prasad MNV (eds) One health. Wiley, London, pp 19–37. https://doi.org/10.1002/9781119867333.ch2
- Blakey ML, Watkins RJ (2022) William Montague Cobb: near the African diasporic origins of activist and biocultural anthropology. Anat Rec 305(4):838–848. https://doi.org/10.1002/ar. 24818
- Blakey ML (1998) Beyond European enlightenment: toward human biology. In: Goodman AH, Leatherman TL (eds) Building a new biocultural synthesis: political-economic perspectives on human biology. University of Michigan Press, London, pp 379–405
- Bopp SE, Gonzalez RE, Per W et al (2013) Identification of the Plasmodium berghei resistance locus 9 linked to survival on chromosome 9. Malar J 12(1):316. https://doi.org/10.1186/1475-2875-12-316
- Bourbou C (2020) Health and disease at the marshes: deciphering human–environmental interactions at Roman Aventicum, Switzerland (1st–3rd century AD). In: Robbins Schug G (ed) The Routledge handbook of the bioarchaeology of climate and environmental change. Routledge, London, pp 141–156
- Brasil P, Mariano G, Zalis M, de Pina-Costa A, Siqueira AM, Silva CB et al (2017) Outbreak of human malaria caused by Plasmodium simium in the Atlantic Forest in Rio de Janeiro: a molecular epidemiological investigation. Lancet Glob Health 5(10):e1038–e1046. https://doi.org/10.1016/S2214-109X(17)30333-9
- Brickley MB (2024) Perspectives on anemia: factors confounding understanding of past occurrence. Int J Paleopathol 44(March):90–104. https://doi.org/10.1016/j.ijpp.2023.12.001
- Brugueras S, Fernández-Martínez B, Martínez-de la Puente J, Figuerola T, Montalvo T, Porro C et al (2020) Environmental drivers, climate change, and emergent diseases transmitted by mosquitoes and their vectors in southern Europe: a systematic review. Environ Res 191:110038. https://doi.org/10.1016/j.envres.2020.110038
- Buikstra JE, DeWitte SN, Agarwal SC, Baker BJ, Bartelink EJ, Berger E et al (2022a) Twenty-first century bioarchaeology: taking stock and moving forward. Am J Biol Anthropol. https://doi.org/10.1002/ajpa.24528
- Buikstra JE, Uhl EW, Wissler A (2022) Big pictures in 21st-century paleopathology: interdisciplinarity and transdisciplinarity. In: Roberts C, Cox M (eds) The Routledge handbook of paleopathology. Routledge, London, pp 625–36. https://doi.org/10.4324/9781003130994-36
- Buikstra JE (2023) Paleopathology: a twenty-first century perspective. In: Larsen CS (ed) A companion to biological anthropology. Wiley, London, pp 474–93. https://doi.org/10.1002/978 1119828075.ch28
- Burke KD, Williams JW, Chandler MA, Haywood AM, Lunt DJ, Otto-Bliesner BL (2018) Pliocene and Eocene provide best analogs for near-future climates. Proc Natl Acad Sci USA 115(52):13288–13293. https://doi.org/10.1073/pnas.1809600115

- Burkett-Cadena ND, Vittor AY (2018) Deforestation and vector-borne disease: forest conversion favors important mosquito vectors of human pathogens. Basic Appl Ecol 26:101–110. https://doi.org/10.1016/j.baae.2017.09.012
- Cáceres L, Calzada JE, Gabster A, Young R, Márquez R, Torres R, Griffith M (2017) Social representations of malaria in the Guna Indigenous population of Comarca Guna de Madungandi. Panama. Malar J 16(1):256. https://doi.org/10.1186/s12936-017-1899-4
- Caminade C, Kovats S, Rocklov J, Tompkins AM, Morse AP, Colón-González FJ et al (2014) Impact of climate change on global malaria distribution. Proc Natl Acad Sci USA 111(9):3286–3291. https://doi.org/10.1073/pnas.1302089111
- Caminade C, McIntyre KM, Jones AE (2016) Climate change and vector-borne diseases: Where are we next heading? J Infect Dis 214(9):1300–1302. https://doi.org/10.1093/infdis/jiw363
- Caminade C, McIntyre KM, Jones AE (2019) Impact of recent and future climate change on vector-borne diseases. Ann N Y Acad Sci 1436(1):157–173. https://doi.org/10.1111/nyas.13950
- Cardona-Arias JA (2022) Systematic review of mixed studies on malaria in pregnancy: individual, cultural, and socioeconomic determinants of its treatment and prevention. Trop Med Infect Dis 7(12):423. https://doi.org/10.3390/tropicalmed7120423
- Carter R, Mendis KN (2002) Evolutionary and historical aspects of the burden of malaria. Clin Microbiol Rev 15(4):564–594. https://doi.org/10.1128/CMR.15.4.564-594.2002
- Cassidy A (2018) Humans, other animals, and 'One Health' in the early twenty-first century. In: Bresalier M, Cassidy A, Woods A (eds) Animals and the shaping of modern medicine. Palgrave Macmillan, pp 193–218
- Cator LJ, Lynch PA, Thomas MB, Read AF (2014) Alterations in mosquito behaviour by malaria parasites: potential impact on force of infection. Malar J 13(1):164. https://doi.org/10.1186/ 1475-2875-13-164
- CDC (Centers for Disease Control and Prevention) (2020) CDC—Malaria—About malaria—Biology. https://www.cdc.gov/malaria/about/biology/index.html
- Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci Adv 1(5):e1400253. https://doi.org/10.1126/sciadv.1400253
- Chin W, Contacos PG, Coatney GR, Kimball HR (1965) A naturally acquired quotidian-type malaria in man transferable to monkeys. Science 149(3686):865–865. https://doi.org/10.1126/science. 149.3686.865.a
- Cohen MN (1984) Paleopathology at the origins of agriculture. Academic Press, London
- Cohen JM (2019) Remarkable solutions to impossible problems: lessons for malaria from the eradication of smallpox. Malar J 18(1):323. https://doi.org/10.1186/s12936-019-2956-y
- Colón-González FJ, Odhiambo MO, Sewe MO, Tompkins AM, Sjödin H, Casallas A, Rocklöv J, Caminade C, Lowe R (2021) Projecting the risk of mosquito-borne diseases in a warmer and more populated world: a multi-model, multi-scenario intercomparison modelling study. Lancet Planet Health 5(7):e404–e414. https://doi.org/10.1016/S2542-5196(21)00132-7
- Contacos PG (1970) Transmission of plasmodium Schwetzi from the chimpanzee to man by mosquito bite. Am J Trop Med Hyg. 1970 Mar:19(2):190–195.
- Conway DJ, Cavanagh DR, Tanabe K, Roper CR, Mikes ZS, Sakihama N, Bojang KA, Oduola
- AMKremsner PG, Arnot DE (2000) A principal target of human immunity to malaria identified by molecular population genetic and immunological analyses. Nat Med 6(6):689–692. https://doi.org/10.1038/76120
- Crawford MJ (2016) The Andean wonder drug: cinchona bark and imperial science in the Spanish Atlantic, 1630–1800. University of Pittsburgh Press, London
- Cuenca PR, Key S, Jumail A, Henry S, Ahmed K, Fornace KM (2021) Epidemiology of the zoonotic malaria *Plasmodium knowlesi* in changing landscapes. Adv Parasitol 113:225–286. https://doi. org/10.1016/bs.apar.2021.08.001
- Cunningham AA, Daszak P, Wood JLN (2017) One Health, emerging infectious diseases and wildlife: Two decades of progress? Philos Trans R Soc Lond B Biol Sci 372(1725):20160167. https://doi.org/10.1098/rstb.2016.0167

Dagen M (2020) History of malaria and its treatment. In: Patrick GL (ed) Antimalarial agents. Elsevier, London, pp 1–48. https://doi.org/10.1016/B978-0-08-101210-9.00001-9

- David PM, Le Dévédec A, Alary A (2021) Pandemics in the age of the Anthropocene: Is 'Planetary Health' the answer? Glob Public Health 16(8–9):1141–1154. https://doi.org/10.1080/17441692. 2021.1893372
- Dawson NM, Coolsaet B, Sterling EJ, Loveridge R, Gross-Camp ND, Wongbusarakum S, Sangha KK, Scherl LM, Phan HP, Zafra-Calvo N (2021) The role of Indigenous peoples and local communities in effective and equitable conservation. https://nru.uncst.go.ug/handle/123456789/6154
- Day MJ (2010) One health: the small animal dimension. Vet Rec 167(22):847
- de la Cova C (2010) Race, health, and disease in 19th-century-born males. Am J Phys Anthropol 144(4):526–537. https://doi.org/10.1002/ajpa.21434
- de la Cova C (2020) Making silenced voices speak: restoring neglected and ignored identities in anatomical collections. In: Mant M, Holland A (eds) Theoretical approaches in bioarchaeology. Routledge, London, pp 150–169
- de la Cova C (2022) Ethical considerations for paleopathology. In: Grauer A (ed) The Routledge handbook of paleopathology. Routledge, London, pp 381–396
- de la Cova C (2008) Silent voices of the destitute: an analysis of African American and Euro-American health during the nineteenth century. PhD thesis, Indiana University
- Deane LM, Deane MP, Neto JF (1966) Studies on transmission of simian malaria and on a natural infection of man with Plasmodium simium in Brazil. Bull World Health Organ 35(5):805
- Dhimal M, Ahrens B, Kuch U (2015) Climate change and spatiotemporal distributions of vector-borne diseases in Nepal—a systematic synthesis of literature. PLoS ONE 10(6):e0129869. https://doi.org/10.1371/journal.pone.0129869
- Doherty SJ, Bojinski S, Henderson-Sellers A, Noone K, Goodrich D, Bindoff NL, Church JA, Hibbard K, Kajfez-Bogataj L, Lynch A (2009) Lessons learned from IPCC AR4: scientific developments needed to understand, predict, and respond to climate change. Bull Am Meteorol Soc 90(4):497–514. https://doi.org/10.1175/2008BAMS2643.1
- Ellwanger JH, Fearnside PM, Ziliotto M, Valverde-Villegas JM, da Veiga EBG, Vieira GF, Bach E, Cardoso JC, Müller NFD, Lopes G (2022) Synthesizing the connections between environmental disturbances and zoonotic spillover. An Acad Bras Cienc 94(Suppl 3):e20211530. https://doi.org/10.1590/0001-3765202120211530
- Escalante AA, Ayala FJ (1994) Phylogeny of the malarial genus Plasmodium derived from rRNA gene sequences. Proc Natl Acad Sci USA 91(24):11373–11377. https://doi.org/10.1073/pnas. 91.24.11373
- Escalante AA, Cornejo OE, Freeland DE, Poe AC, Durrego E, Collins WE, Lal AA (2005) A monkey's tale: the origin of Plasmodium vivax as a human malaria parasite. Proc Natl Acad Sci USA 102(6):1980–1985. https://doi.org/10.1073/pnas.0409652102
- Essack SY (2018) Environment: the neglected component of the One Health triad. Lancet Planet Health 2(6):e238–e239. https://doi.org/10.1016/S2542-5196(18)30124-4
- Faust C, Dobson AP (2015) Primate malarias: diversity, distribution, and insights for zoonotic Plasmodium. One Health 1:66–75, https://doi.org/10.1016/j.onehlt.2015.08.001
- Fletcher IK (2022) Assessing the impact of global environmental change on mosquito-borne disease: a planetary health approach. PhD thesis, London School of Hygiene & Tropical Medicine. https://doi.org/10.17037/PUBS.04668987
- Fornace KM, Laporta GZ, Vythilingham I, Chua TH, Ahmed K, Jeyaprakasam NK, de Castro Duarte AM, Amir A, Phang WK, Drakeley C (2023) Simian malaria: a narrative review on emergence, epidemiology, and threat to global malaria elimination. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(23)00298-0
- Frausin G, Hidalgo AF, Souza RBSL, Kinupp VF, Ming LC, Martin A, Pohlit A, Milliken W (2015) An ethnobotanical study of anti-malarial plants among Indigenous people on the Upper Negro River in the Brazilian Amazon. J Ethnopharmacol 174(Nov):238–52. https://doi.org/10.1016/j.jep.2015.07.033

- Friant S, Bonwitt J, Ayambem J, Ifebueme NM, Alobi OO, Otukpa AO, Bennett AJ et al (2022) Zootherapy as a potential pathway for zoonotic spillover: a mixed-methods study of the use of animal products in medicinal and cultural practices in Nigeria. One Health Outlook 4(1):5. https://doi.org/10.1186/s42522-022-00060-3
- Garcia-Gonzalez F, Ripple WJ, Malo AF (2024) Scientists' warning to humanity for long-term planetary thinking on biodiversity and humankind preservation: a cosmic perspective. Bioscience 74(2):82–85. https://doi.org/10.1093/biosci/biad108
- Garnett ST, Burgess ND, Fa JE, Fernández-Llamazares Á, Molnár Z, Robinson CJ et al (2018) A spatial overview of the global importance of Indigenous lands for conservation. Nat Sustain 1(7):369–374. https://doi.org/10.1038/s41893-018-0100-6
- Gelabert P, Olalde I, De-DIos S, Civit S, Lalueza-Fox C (2017) Malaria was a weak selective force in ancient Europeans. Sci Rep 7(1):1377. https://doi.org/10.1038/s41598-017-01598-6
- Gething PW, Patil AP, Smith DL, Guerra CA, Elyazar IRF, Johnston GL et al (2011) A new world malaria map: plasmodium falciparum endemicity in 2010. Malar J 10(1):378. https://doi.org/10.1186/1475-2875-10-378
- Goodman AH (1999) Building a new biocultural synthesis: political-economic perspectives on human biology. University of Michigan Press, London
- Gottdenker NL, Streicker DG, Faust CL, Carroll CR (2014) Anthropogenic land use change and infectious diseases: a review of the evidence. EcoHealth 11(4):619–632. https://doi.org/10.1007/s10393-014-0941-z
- Gowland RL, Western AG (2011) Morbidity in the marshes: using spatial epidemiology to investigate skeletal evidence for malaria in Anglo-Saxon England (AD 410–1050). Am J Phys Anthropol 147(2):301–311. https://doi.org/10.1002/ajpa.21648
- Grauer AL (2019) Circulatory, reticuloendothelial, and hematopoietic disorders. In: Buikstra JE, Roberts CA (eds) Ortner's identification of pathological conditions in human skeletal remains. Elsevier, London, pp 491–529
- Guégan JF, Ayouba A, Cappelle J, De Thoisy B (2020) Forests and emerging infectious diseases: unleashing the beast within. Environ Res Lett 15(8):083007. https://doi.org/10.1088/1748-9326/ab8dd7
- Haldane JBS (1949) Disease and evolution. In: Moulton FR (ed) Malaria: genetic and evolutionary aspects. American Association for the Advancement of Science, London, pp 175–85
- Harper K, Armelagos G (2010) The changing disease-scape in the third epidemiological transition. Int J Environ Res Public Health 7(2):675–697. https://doi.org/10.3390/ijerph7020675
- Hartl DL, Volkman SK, Nielsen KM, Barry AE, Day KP, Wirth DF, Winzeler EA (2002) The paradoxical population genetics of Plasmodium falciparum. Trends Parasitol 18(6):266–272. https://doi.org/10.1016/S1471-4922(02)02268-7
- Hedrick PW (2011) Population genetics of malaria resistance in humans. Heredity 107(4):283–304. https://doi.org/10.1038/hdv.2011.16
- Heller NE, McManus KC, Chauvin DS, Skybrook D, Barnosky AD (2023) Including stewardship in ecosystem health assessment. Nat Sustain 6(7):731–741. https://doi.org/10.1038/s41893-022-00999-5
- Hockham C, Ekwattanakit S, Bhatt S, Penman BS, Gupta S, Viprakasit V, Piel FB (2019) Estimating the burden of α-thalassaemia in Thailand using a comprehensive prevalence database for Southeast Asia. Nat Commun 10(1):2743. eLife, 8, e40580.
- Horton R, Beaglehole R, Bonita R, Raeburn J, McKee M, Wall S (2014) From public to planetary health: a manifesto. Lancet 383(9920):847. https://doi.org/10.1016/S0140-6736(14)60409-8
- Hughes AL, Verra F (1998) Ancient Polymorphism and the Hypothesis of a Recent Bottleneck in the Malaria Parasite Plasmodium Falciparum. Genetics 150(1):511–513
- Joshi AB, Banjara MR (2008) Malaria related knowledge, practices and behaviour of people in Nepal. J Vector Borne Dis 45(1):44-50
- Kader M, Fatimah S, Rashid A, Ahmad NI, Zahari SNA, Hamat RA (2022) Sero-prevalence of malaria and the knowledge, attitudes and practices relating to the prevention of malaria among

- indigenous people living in the central forest spine in peninsular Malaysia: a mixed-methods study. Mal J 21(1):281. https://doi.org/10.1186/s12936-022-04293-5
- Kahn LH (2022) The case for a one health approach from a physician's perspective. In: Braverman I (ed) More-than-one health: humans, animals, and the environment post-COVID. Routledge, London, pp 42–53
- Kaplan B, Kahn LH, Monath TP, Conti LA, Yuill TM, Chapman HJ, ... & Seifman R. (2022) One Medicine-One Health: an historic perspective. https://onehealthinitiative.com/
- Kariuki SM, Williams TN (2020) Human genetics and malaria resistance. Hum Genet 139(6–7):801–811. https://doi.org/10.1007/s00439-019-02000-2
- Karypidou MC, Almpanidou V, Tompkins AM, Mazaris AD, Gewehr S, Mourelatos S, Katragkou E (2020) Projected shifts in the distribution of malaria vectors due to climate change. Clim Change 163(4):2117–2133. https://doi.org/10.1007/s10584-020-02926-9
- Kaur S, Singh M (2017) Identification of mosquitoes, nature of diseases and treatment in early sanskrit literature. Indian J Hist Sci 52:243–250
- Kemp L, Xu C, Depledge J, Ebi KL, Gibbins G, Kohler TA et al (2022) Climate endgame: exploring catastrophic climate change scenarios. Proc Natl Acad Sci 119(34):e2108146119. https://doi.org/10.1073/pnas.2108146119
- Khairat R, Ball M, Chang CC, Bianucci R, Nerlich AG, Trautmann M, Ismail S, Shanab M, Karim M, Gad YZ, Zink AR, Pusch CM (2013) First insights into the metagenome of Egyptian mummies using next-generation sequencing. J Appl Genet 54(3):309–325. https://doi.org/10.1007/s13 353-013-0157-1
- Kienberger S, Hagenlocher M (2014) Spatial-explicit modeling of social vulnerability to malaria in East Africa. Int J Health Geogr 13(1):29. https://doi.org/10.1186/1476-072X-13-29
- Kulkarni MA, Duguay M, Ost K (2022) Charting the evidence for climate change impacts on the global spread of malaria and dengue and adaptive responses: a scoping review of reviews. Glob Health 18(1):1. https://doi.org/10.1186/s12992-021-00793-2
- Lalremruata A, Ball M, Bianucci R, Welte B, Nerlich AG, Kun JF et al (2013) Molecular identification of falciparum malaria and human tuberculosis co-infections in mummies from the Fayum Depression (Lower Egypt). PLoS ONE 8(4):e60307. https://doi.org/10.1371/journal.pone.0060307.
- Lamoreux J, Bennett EL (2024) Scientists' warning on the problem with overpopulation and living systems. J Popul Ability 8(1):95–111. https://doi.org/10.3197/JPS.63799953906873
- Lans AM (2022) Investigating black women's mental health in progressive era New York City: a bioarchaeological study of slow violence and landscapes of impunity. Hist Archaeol 56(4):663–680. https://doi.org/10.1007/s41636-022-00372-1
- Lans AM (2018a) Embodied Discrimination and 'Mutilated Historicity': Archiving Black Women's Bodies." https://www.researchgate.net/profile/Aja-Lans-2/publication/338701959_Embodied_Discrimination_and_Mutilated_Historicity_Archiving_Black_Women's_Bodies/links/5e261d bd299bf1031e27b733/Embodied-Discrimination-and-Mutilated-Historicity-Archiving-Black-Womens-Bodies.pdf
- Lans AM (2018b) Whatever was once associated with him, continues to bear his stamp': articulating and dissecting George S. Huntington and his anatomical collection. In: Stone P (ed) Bioarchaeological analyses and bodies. Springer, London, pp 11–26. https://doi.org/10.1007/978-3-319-71114-0_2
- Lans AM (2021) Negro: embodied experiences of inequality in historic New York City. PhD thesis, Syracuse University. https://search.proquest.com/openview/4564188794a384d9b8 3f746bcd7ccd79/1?pq-origsite=gscholar&cbl=18750&diss=y
- Larsen CS (2018) The bioarchaeology of health crisis: infectious disease in the past. Annu Rev Anthropol 47(1):295–313. https://doi.org/10.1146/annurev-anthro-102116-041441
- Larsen CS (2023) The past 12,000 years of behavior, adaptation, population, and evolution shaped who we are today. Proc Natl Acad Sci USA 120(4):e2209613120. https://doi.org/10.1073/pnas. 2209613120

- Leal Filho W, Barbir J, Gwenzi J, Ayal D, Simpson NP, Adeleke L et al (2022) The role of Indigenous knowledge in climate change adaptation in Africa. Environ Sci Policy 136:250–260
- Lee MSJ, Coban C (2018) Unforeseen pathologies caused by malaria. Int Immunol 30(3):121–129. https://doi.org/10.1093/intimm/dxx076
- Lempang MEP, Dewayanti FK, Syahrani L, Permana DH, Malaka R, Asih PBS, Syafruddin D (2022) Primate malaria: an emerging challenge of zoonotic malaria in Indonesia. One Health 14:100389
- Lewis CM, Akinyi MY, DeWitte SN, Stone AC (2023) Ancient pathogens provide a window into health and well-being. Proc Natl Acad Sci USA 120(4):e2209476119. https://doi.org/10.1073/ pnas.2209476119
- Littleton J (2011) Moving from the canary in the coalmine: modeling childhood in Bahrain. In: Agarwal SC, Glencross BA (eds) Social bioarchaeology. Wiley, London. https://doi.org/10.1002/9781444390537
- Liu W, Li Y, Learn GH, Rudicell RS, Robertson JD, Keele BF et al (2010) Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature 467(7314):420–425. https://doi.org/ 10.1038/nature09442
- Llanos-Lizcano A, Haemmerle, M., Sperduri, A., Sawyer, S., Zagorc, B., Ozdogan, K. T., ... & Gelabert, P. (2024). A complete mitochondrial genome of a Roman-era *Plasmodium falciparum*. bioRxiv, 2024-03.
- Loaiza JR, Bermingham E, Sanjur OI, Scott ME, Bickersmith SA, Conn JE (2012) Review of genetic diversity in malaria vectors (Culicidae: Anophelinae). Infect Genet Evol 12(1):1–12
- Loufouma Mbouaka A, Gamble M, Wurst C, Jäger HY, Maixner F, Zink A et al (2021) The elusive parasite: comparing macroscopic, immunological, and genomic approaches to identifying malaria in human skeletal remains from Sayala, Egypt (Third to Sixth Centuries AD). Archaeol Anthropol Sci 13(7):115. https://doi.org/10.1007/s12520-021-01350-z
- Lovell NC (1997) Trauma analysis in paleopathology. Am J Phys Anthropol 104(S25):139–170 Lovell NC (1998) Analysis and interpretation of skeletal trauma. In: Katzenberg MA, Saunders SR (eds) Biological anthropology of the human skeleton. Wiley-Liss, London, pp 307–328
- Lovell NC (2016) Skeletal trauma and dismemberment. In: Clement JG, Ranson DL (eds) Craniofacial identification in forensic medicine. CRC Press, London, pp 191–203
- Loy DE, Liu W, Li Y, Learn GH, Plenderleith LJ, Sundararaman SA et al (2017) Out of Africa: origins and evolution of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Int J Parasitol 47(2–3):87–97. https://doi.org/10.1016/j.jipara.2016.05.010
- Loy DE, Plenderleith LJ, Sundararaman SA, Liu W, Gruszczyk J, Chen YJ, Trimboli S et al (2018) Evolutionary history of human Plasmodium vivax revealed by genome-wide analyses of related ape parasites. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1810053115
- Mabaso MLH, Ndlovu NC (2012) Critical review of research literature on climate-driven malaria epidemics in sub-Saharan Africa. Public Health 126(11):909–919
- Macherera M, Chimbari MJ, Mukaratirwa S (2017) Indigenous environmental indicators for malaria: a district study in Zimbabwe. Acta Trop 175:50–59
- Major RH (1954) A history of medicine: Mesopotamia. In: Major RH (ed) A history of medicine. Thomas CC, pp 20–32
- Malatji MK (2022) The use of knowledge and perceptions of malaria for improved control and elimination of malaria in the community of Dan, Limpopo Province, South Africa. PhD thesis. http://ulspace.ul.ac.za/handle/10386/4245
- Mancini MCS, Barreto JR, Carvalho RL, Muylaert RL, Arrais RC, Prist PR (2024) Landscape ecology meets disease ecology in the Tropical America: patterns, trends, and future directions. Curr Landsc Ecol Rep. https://doi.org/10.1007/s40823-024-00096-3
- Mant M, Holland A (2019) Bioarchaeology of marginalized people. Academic Press, London Mant M, de la Cova C, Brickley MB (2021) Intersectionality and trauma analysis in bioarchaeology. Am J Phys Anthropol 174(4):583–594

Marciniak S, Herring DA, Sperduti A, Poinar HN, Prowse TL (2018) A multi-faceted anthropological and genomic approach to framing Plasmodium falciparum malaria in Imperial Period central-southern Italy (1st–4th c. CE). J Anthropol Archaeol 49:210–224

- Marciniak S (2016) Scourge of the empire? Ancient pathogen genomics and the biosocial context of malaria in Imperial Period southern Italy (1st–4th c. AD). PhD thesis. https://macsphere.mcmaster.ca/handle/11375/20699
- Marcott SA, Shakun JD, Clark PU, Mix AC (2013) A reconstruction of regional and global temperature for the past 11,300 years. Science 339(6124):1198–1201
- Martiniano R, Haber M, Almarri MA, Mattiangeli V, Kuijpers MCM, Chamel B et al (2024) Ancient genomes illuminate Eastern Arabian population history and adaptation against malaria. Cell Genomics. https://www.cell.com/cell-genomics/pdf/S2666-979X(24)00034-X.pdf
- Miller RL, Ikram S, Armelagos GJ, Walker R, Harer WB, Shiff CJ, Baggett D, Carrigan M, Maret SM (1994) Diagnosis of *Plasmodium falciparum* infections in mummies using the rapid manual ParaSight-F test. Trans R Soc Trop Med Hyg 88(1):31–32. https://doi.org/10.1016/0035-920 3(94)90484-7
- Miller KG, Schmelz WJ, Browning JV, Kopp RE, Mountain GS, Wright JD (2020) Ancient sea level: as key to the future. Oceanography 33(2):32–41
- Mitchell PD (2017) Improving the use of historical written sources in paleopathology. Int J Paleopathol 19(December):88–95. https://doi.org/10.1016/j.ijpp.2016.02.005
- Mitchell PD (2024) Using paleopathology to provide a deep-time perspective that improves our understanding of One Health challenges: exploring urbanization. Res Dir One Health 2:e5
- Molina-Cruz A, Zilversmit MM, Neafsey DE, Hartl DL, Barillas-Mury C (2016) Mosquito vectors and the globalization of Plasmodium falciparum malaria. Annu Rev Genet 50(1):447–465. https://doi.org/10.1146/annurev-genet-120215-035211
- Monroe A, Olapeju B, Moore S, Hunter G, Merritt AP, Okumu F, Babalola S (2021) Improving malaria control by understanding human behaviour. Bull World Health Organ 99(11):837
- Mordecai EA, Ryan SJ, Caldwell JM, Shah MM, LaBeaud AD (2020) Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet Health 4(9):e416–e423. https://doi.org/10.1016/S2542-5196(20)30178-9
- Munajat MB, Rahim MAFA, Wahid W, Seri Rakna MIM, Divis PCS, Chuangchaiya S et al (2021) Perceptions and prevention practices on malaria among the Indigenous Orang Asli community in Kelantan, Peninsular Malaysia. Malar J 20(1):202. https://doi.org/10.1186/s12936-021-03741-v
- Munguti KJ (1997) Indigenous knowledge in the management of malaria and visceral leishmaniasis among the Tugen of Kenya. http://erepository.uonbi.ac.ke/bitstream/handle/11295/39556/Munguti_Indigenous%20Knowledge%20in%20the%20Management%20of%20Malaria%20and%20Visceral%20Leishmaniasis%20among%20the%20Tugen%20of%20Kenya.pdf?sequence=2
- Mutasa M (2015) Knowledge apartheid in disaster risk management discourse: Is marrying Indigenous and scientific knowledge the missing link? Jamba J Disaster Risk Stud 7(1):1–10. https://doi.org/10.4102/jamba.v7i1.150
- Myers SS (2017) Planetary health: protecting human health on a rapidly changing planet. Lancet 390(10114):2860–2868. https://doi.org/10.1016/S0140-6736(17)32846-5
- Naserrudin NA, Monroe A, Culleton R, Hod R, Jeffree MS, Ahmed K, Hassan MR (2022) Reimagining zoonotic malaria control in communities exposed to *Plasmodium knowlesi* infection. J Physiol Anthropol 41(1):14. https://doi.org/10.1186/s40101-022-00288-y
- Neafsey DE, Galinsky K, Jiang RHY, Young L, Sykes SM, Saif S, Gujja S, Goldberg JM, Young S, Zeng Q (2012) The malaria parasite Plasmodium vivax exhibits greater genetic diversity than *Plasmodium falciparum*. Nat Genet 44(9):1046–1050
- Nerlich AG, Schraut B, Dittrich S, Jelinek T, Zink AR (2008) Plasmodium falciparum in ancient Egypt. Emerg Infect Dis 14(8):1317–1319. https://doi.org/10.3201/eid1408.080235
- Nerlich AG (2016) Paleopathology and paleomicrobiology of malaria. In: Drancourt M, Raoult D (eds) Paleomicrobiology of humans. ASM Press, Washington, DC, pp 155–60. https://doi.org/10.1128/9781555819170.ch15

- Newfield TP (2016) Mysterious and Mortiferous clouds: the climate cooling and disease burden of late antiquity. Late Antiq Archaeol 12(1):89–115. https://doi.org/10.1163/22134522-12340068
- Nystrom KC, Robbins Schug G (2020) A bioarchaeology of social inequality and environmental change. In: Robbins Schug G (ed) The Routledge handbook of the bioarchaeology of climate and environmental change. Routledge, Abingdon, pp 255–276
- Obame-Nkoghe J, Roiz D, Ngangue MF, Costantini C, Rahola N, Jiolle D, Lehmann D et al (2023) Towards the invasion of wild and rural forested areas in Gabon (Central Africa) by the Asian tiger mosquito Aedes albopictus: potential risks from the One Health perspective. PLOS Negl Trop Dis 17(8):e0011501. https://doi.org/10.1371/journal.pntd.0011501
- Odonne G, Musset L, Cropet C, Philogene B, Gaillet M, Tareau M-A et al (2021) When local phytotherapies meet biomedicine. Cross-sectional study of knowledge and intercultural practices against malaria in eastern French Guiana. J Ethnopharmacol 279:114384
- Onyango EA, Sahin O, Awiti A, Chu C, Mackey B (2016) An integrated risk and vulnerability assessment framework for climate change and malaria transmission in East Africa. Malar J 15(1):551. https://doi.org/10.1186/s12936-016-1600-3
- Ortiz DI, Piche-Ovares M, Romero-Vega LM, Wagman J, Troyo A (2021) The impact of deforestation, urbanization, and changing land use patterns on the ecology of mosquito and tick-borne diseases in Central America. Insects 13(1):20
- Ostfeld RS, Keesing F (2020) Planetary health and infectious disease. In: Planetary health: protecting nature to protect ourselves. Island Press, London, pp 141–64
- Packard RM (2021) The making of a tropical disease: a short history of malaria. JHU Press, London Parkhurst J, Ghilardi L, Webster J, Snow RW, Lynch CA (2021) Competing interests, clashing ideas and institutionalizing influence: insights into the political economy of malaria control from seven African countries. Health Policy Plan 36(1):35–44. https://doi.org/10.1093/heapol/ czaa166
- Paupy C, Makanga B, Ollomo B, Rahola N, Durand P, Magnus J et al (2013) Anopheles moucheti and Anopheles vinckei are candidate vectors of ape Plasmodium parasites, including Plasmodium praefalciparum in Gabon. PLoS ONE 8(2):e57294
- Perry MA, Gowland RL (2022) Compounding vulnerabilities: syndemics and the social determinants of disease in the past. Int J Paleopathol 39(December):35–49. https://doi.org/10.1016/j.ijpp.2022.09.002
- Phoobane P, Masinde M (2023) Investigating the adoption of indigenous knowledge in mitigating climate-linked challenges: a case study of vhembe district in South Africa. Int J Res Business Social Sci (2147–4478) 12(7):394–404
- Plenderleith LJ, Liu W, Li Y, Loy DE, Mollison E, Connell J et al (2022) Zoonotic origin of the human malaria parasite plasmodium Malariae from African apes. Nature Comm 13(1):1868
- Possehl GL (2007) The middle Asian interaction sphere. Expedition 49(1):40-42
- Prugnolle F, Rougeron V, Becquart P, Berry A, Makanga B, Rahola N et al (2013) Diversity, Host Switching and Evolution of *Plasmodium Vivax* Infecting African Great Apes. Proc Natl Acad Sci 110(20):8123–8128. https://doi.org/10.1073/pnas.1306004110
- Pruss-Ustun A, Corvalán CF, WHO (2006) Preventing disease through healthy environments: towards an estimate of the environmental burden of disease. World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/43457/9241593822_eng.pdf
- Rayfield KM, Mychajliw AM, Singleton RR, Sholts SB, Hofman CA (2023) Uncovering the holocene roots of contemporary disease-scapes: bringing archaeology into one health. Proc R Soc B Biol Sci 290(2012):20230525. https://doi.org/10.1098/rspb.2023.0525
- Rayner JC, Liu W, Peeters M, Sharp PM, Hahn BH (2011) A plethora of plasmodium species in wild apes: A source of human infection? Trends Parasitol 27(5):222–229. https://doi.org/10. 1016/j.pt.2011.01.006
- Ricci F (2012) Social implications of malaria and their relationships with poverty. Mediterr J Hematol Infect Dis 4(1):e2012048. https://doi.org/10.4084/MJHID.2012.048
- Rich SM, Leendertz FH, Xu G, LeBreton M, Djoko CF et al (2009) The origin of malignant malaria. Proc Natl Acad Sci USA 106(35):14902–14907. https://doi.org/10.1073/pnas.0907740106

Robb J, Cessford C, Dittmar J, Inskip SA, Mitchell PD (2021) The greatest health problem of the Middle Ages? Estimating the burden of disease in medieval England. Int J Paleopathol 34:101–112

- Robbins Schug G (2020a) A bioarchaeology of climate and environmental change. In: Robbins Schug G (ed) The Routledge handbook of the bioarchaeology of climate and environmental change. Routledge, Abingdon, pp 1–20
- Robbins Schug G (ed) (2020b) The Routledge handbook of the bioarchaeology of climate and environmental change. Routledge, Abingdon
- Robbins Schug G, Halcrow SE (2022) Building a bioarchaeology of pandemic, epidemic, and syndemic diseases: lessons for understanding COVID-19. Bioarchaeol Int 6(1–2):179–200
- Robbins Schug G, Buikstra JE, DeWitte SN, Baker BJ, Berger E, Buzon MR et al (2023) Climate change, human health, and resilience in the Holocene. Proc Natl Acad Sci 120(4):e2209472120
- Robbins Schug G, Blevins KE (2016) The center cannot hold: a bioarchaeological perspective on environmental crisis in the second millennium BCE. In: Companion to South Asia in the past. Companion series. Wiley-Blackwell, Boston, pp 255–73
- Robbins Schug G, Parnell EK, Harrod RP (2019) Changing the climate: bioarchaeology responds to deterministic thinking about human–environmental interactions in the past. In: Buikstra JE (ed) Bioarchaeologists speak out: deep time perspectives on contemporary issues. Bioarchaeology and social theory. Springer, Cham, pp 133–59. https://doi.org/10.1007/978-3-319-93012-1_6
- Roberts CA, Buikstra JE (2003) The bioarchaeology of tuberculosis: a global view on a re-emerging disease. University Press of Florida
- Rockman M, Hritz C (2020) Expanding use of archaeology in climate change response by changing its social environment. Proc Natl Acad Sci 117(15):8295–8302. https://doi.org/10.1073/pnas. 1914213117
- Ryan SJ, Lippi CA, Zermoglio MF (2020) Shifting transmission risk for malaria in Africa with climate change: a framework for planning and intervention. Malar J 19(1):170. https://doi.org/10.1186/s12936-020-03224-6
- Ryan SJ, Carlson CJ, Mordecai EA, Johnson LR (2023) Mapping the risk of spillover and spread of Plasmodium knowlesi across Southeast Asia. PLoS Negl Trop Dis 17(2):e0009396. https:// doi.org/10.1371/journal.pntd.0009396
- Sallares R, Gomzi S (2001) Biomolecular archaeology of malaria. Anc Biomol 3(3):195–213
- Samarasekera U (2023) Climate change and malaria: predictions becoming reality. Lancet 402(10399):361–362. https://doi.org/10.1016/S0140-6736(23)01569-6
- Schats R (2023) Developing an archaeology of malaria. A critical review of current approaches and a discussion on ways forward. Int J Paleopathol 41(June):32–42. https://doi.org/10.1016/j.ijpp. 2023.03.002
- Schellenberg JRM, Smith T, Alonso PL, Hayes RJ (1994) What is clinical malaria? Finding case definitions for field research in highly endemic areas. Parasitol Today 10(11):439–442. https://doi.org/10.1016/0169-4758(94)90179-1
- Setzer TJ (2010) Malaria in prehistoric Sardinia (Italy): an examination of skeletal remains from the Middle Bronze Age. University of South Florida. https://search.proquest.com/openview/879 2cdc3aaa74c37e131522c8f26a842/1?pq-origsite=gscholar&cbl=18750
- Shin DH, Seo M, Hong JH, Lee E (2018) Paleopathological considerations on malaria infection in Korea before the 20th century. Biomed Res Int 2018. https://www.hindawi.com/journals/bmri/ 2018/8516785/abs/
- Singh B, Kim Sung L, Matusop A et al (2004) A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 363(9414):1017–1024. https://doi.org/10.1016/S0140-6736(04)15836-4
- Smith-Guzmán NE (2015a) Cribra orbitalia in the ancient Nile Valley and its connection to malaria. Int J Paleopathol 10:1–12
- Smith-Guzmán NE (2015b) The skeletal manifestation of malaria: an epidemiological approach using documented skeletal collections. Am J Phys Anthropol 158(4):624–635. https://doi.org/10.1002/ajpa.22819

- Solomon S (2007) Climate change 2007-the physical science basis: working group I contribution to the Fourth Assessment Report of the IPCC, vol 4. Cambridge University Press, Cambridge
- Steinthorsdottir M, Coxall HK, De Boer AM, Huber M, Barbolini N, Bradshaw CD, Burls NJ et al (2021) The miocene: the future of the past. Paleoceanogr Paleoclimatol 36(4):e2020PA004037. https://doi.org/10.1029/2020PA004037
- Stephens L, Fuller D, Boivin N, Rick T, Gauthier N et al (2019) Archaeological assessment reveals Earth's early transformation through land use. Science 365(6456):897–902. https://doi.org/10.1126/science.aax1192
- Sundararaman SA, Liu W, Keele BF, Learn GH, Bittinger K, Mouacha F, Ahuka-Mundeke S et al (2013) Plasmodium falciparum-like parasites infecting wild apes in southern Cameroon do not represent a recurrent source of human malaria. Proc Natl Acad Sci 110(17):7020–7025. https:// doi.org/10.1073/pnas.1305201110
- Sundararaman SA, Plenderleith LJ, Liu W, Loy DE, Learn GH, Li Y, Shaw KS, Ayouba A, Peeters M, Speede S (2016) Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria. Nat Commun 7(1):11078
- Tabuti JRS, Obakiro SB, Nabatanzi A, Anywar G, Nambejja C, Mutyaba MR, Omara T, Waako P (2023) Medicinal plants used for treatment of malaria by indigenous communities of Tororo District, Eastern Uganda. Trop Med Health 51(1):34. https://doi.org/10.1186/s41182-023-005 26-8
- Tachibana S-I, Sullivan SA, Kawai S, Nakamura S, Kim HR, Goto N, Arisue N, Palacpac NMQ, Honma H, Yagi M (2012) Plasmodium cynomolgi genome sequences provide insight into Plasmodium vivax and the monkey malaria clade. Nat Genet 44(9):1051–1055
- Taylor SM, Antonia A, Feng G, Mwapasa V, Chaluluka E, Molyneux M, ter Kuile FO, Rogerson SJ, Meshnick SR (2012) Adaptive evolution and fixation of drug-resistant Plasmodium falciparum genotypes in pregnancy-associated malaria: 9-year results from the QuEERPAM study. Infect Genet Evol 12(2):282–290
- Timmann C, Meyer CG (2010) Malaria, mummies, mutations: Tutankhamun's archaeological autopsy: Tutankhamun's cause of death. Trop Med Int Health 15(11):1278–1280. https://doi.org/10.1111/j.1365-3156.2010.02614.x
- Tishkoff SA, Williams SM (2002) Genetic analysis of African populations: human evolution and complex disease. Nat Rev Genet 3(8):611–621. https://doi.org/10.1038/nrg865
- Tu Y (2017) From Artemisia annua L. to artemisinins: the discovery and development of artemisinins and antimalarial agents. Academic Press, London
- Uhl EW, Thomas R (2022) Uncovering tales of transmission: an integrated palaeopathological perspective on the evolution of shared human and animal pathogens. In: Palaeopathology and evolutionary medicine: an integrated approach, p 317
- Van De Straat B, Sebayang B, Grigg MJ, Staunton K, Garjito TA, Vythilingam I et al (2022) Zoonotic malaria transmission and land use change in Southeast Asia: what is known about the vectors. Mal J 21(1):109. https://doi.org/10.1186/s12936-022-04129-2
- van der Watt D, Reader T, Birkholtz LM (2022a) Adapt or die: targeting unique transmissionstage biology for malaria elimination. Frontiers in Cellular and Infection Microbiology, 12, 901971.
- Vlok M, Buckley HR, Miszkiewicz JJ, Walker MM, Domett K, Willis A et al (2021) Forager and farmer evolutionary adaptations to malaria evidenced by 7000 years of thalassemia in southeast Asia. Sci Rep 11(1):5677. https://doi.org/10.1038/s41598-021-83978-4
- Von Der Heydt AS (2022) Can the miocene climate inform the future? Science 377(6601):26–27. https://doi.org/10.1126/science.abq6542
- Watkins R (2010) Variation in health and socioeconomic status within the W. Montague Cobb skeletal collection: degenerative joint disease, trauma and cause of death. Int J Osteoarchaeol 22(1):22–44. https://doi.org/10.1002/oa.1178
- Watkins R (2018) Anatomical collections as the anthropological other: some considerations. In: Stone PK (ed) Bioarchaeological analyses and bodies: new ways of knowing anatomical and archaeological skeletal collections. Bioarchaeology and social theory. Springer, London, pp 27–47. https://doi.org/10.1007/978-3-319-71114-0_3

Watkins RJ (2020) An Alter (Ed) Native perspective on historical bioarchaeology. Hist Archaeol 54:17–33

- Webster JP, Gower CM, Knowles SCL, Molyneux DH, Fenton A (2016) One health—an ecological and evolutionary framework for tackling neglected zoonotic diseases. Evol Appl 9(2):313–333. https://doi.org/10.1111/eva.12341
- Whitmee S, Haines A, Beyrer C, Boltz F, Capon AG, de Souza F, Dias B, Ezeh A et al (2015) Safeguarding human health in the Anthropocene epoch: report of the Rockefeller foundation-lancet commission on planetary health. Lancet 386(10007):1973–2028. https://doi.org/10.1016/S0140-6736(15)60901-1
- WHO (n.d.) World malaria report 2021. Available at: https://www.who.int/publications-detail-red irect/9789240040496
- WHO (2021) World malaria report 2020: 20 years of global progress and challenges
- WHO (2022) WHO guidelines for malaria, 3 June 2022. World Health Organization. Available at: https://apps.who.int/iris/bitstream/handle/10665/354781/WHO-UCN-GMP-2022.01-Rev.2-eng.pdf?sequence=1
- Wilson J, Pickel DG, Newfield T, Malis S (2023) Nested environments: a biocultural examination of malaria, disease stress, and mother-infant health in a rural community in late antique Umbria. Env Archaeol. https://doi.org/10.1080/14614103.2023.2166652
- Woodward A, Smith KR, Campbell-Lendrum D, Chadee DD, Honda Y et al (2014) Climate change and health: on the way to COP21. Lancet 385(9964):689–692. https://doi.org/10.1016/S0140-6736(14)62153-8
- Wu H-Z, Fang Z-Q, Cheng P-J (2013) Introduction to diagnosis in traditional chinese medicine, vol 2. World Scientific, Singapore
- Yasuoka J, Levins R (2007) Impact of deforestation and agricultural development on anopheline ecology and malaria epidemiology. Am J Trop Med Hyg 76(3):450–460. https://doi.org/10.4269/ajtmh.2007.76.450
- Yi L, Xu X, Ge W, Xue H, Li J, Li D et al (2019) The impact of climate variability on infectious disease transmission in China: current knowledge and further directions. Environ Res 173:255–261
- Zakariya AM, Adamu A, Nuhu A, Kiri IZ (2021) Assessment of indigenous knowledge on medicinal plants used in the management of malaria in Kafin Hausa, North-Western Nigeria. Ethnobot Res Appl 22:1–18
- Zink AR, Reischl U, Wolf H, Nerlich AG (2002) Molecular Analysis of Ancient Microbial Infections. Fems Microbiol Lett 213:141–147
- Zinsstag J, Crump L, Schelling E, Hattendorf J, Maidane YO, Ali KO et al (2018) Climate change and one health. Fems Microbiol Lett 365(11):fny085. https://doi.org/10.1093/femsle/fny085
- Zuckerman MK, Armelagos GJ (2011) The origins of biocultural dimensions in bioarchaeology. In: Social bioarchaeology, pp 13–43
- Zuckerman MK, Martin DL (2016) New directions in biocultural anthropology. Wiley, London

Gwen Robbins Schug (Ph.D. 2007, University of Oregon) is a professor of Biology at the University of North Carolina Greensboro. She is a paleopathologist with research focused on adaptive challenges of changing environments and periods of rapid climate change in the past, the strategies employed by human communities, and their long-term health outcomes. Her interests also include understanding how policy integrates with research on human evolution. She is the author of numerous research papers and book chapters and the book, *Bioarchaeology and Climate Change: A view from South Asian Prehistory.* She has also edited two books, *The Routledge Handbook of the Bioarchaeology of Climate and Environmental Change* and *A Companion to South Asia in the Past.* She is the co-Editor in Chief of *Bioarchaeology International*, Academic Editor

of *PLoS ONE*, Associate Editor of *Cambridge Directions in Research: ONE Health* and *Frontiers in Environmental Health*. She is a member of the Advisory Board for the Triangle Center for Evolutionary Medicine (TriCEM) and a member of the *GRIST 50 2023*. She is mother to 4 children, 3 dogs, and 2 cats.